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Abstract

Many fundamental problems in shared-memory distributed computing, including mutual exclu-

sion [8], consensus [18], and implementations of many sequential objects [14], are known to require

linear space in the worst case. However, these lower bounds all work by constructing particu-

lar executions for any given algorithm that may be both very long and very improbable. The

significance of these bounds is justified by an assumption that any space that is used in some

execution must be allocated for all executions. This assumption is not consistent with the storage

allocation mechanisms of actual practical systems.

We consider the consequences of adopting a per-execution approach to space complexity,

where an object only counts toward the space complexity of an execution if it is used in that

execution. This allows us to show that many known randomized algorithms for fundamental

problems in shared-memory distributed computing have expected space complexity much lower

than the worst-case lower bounds, and that many algorithms that are adaptive in time complexity

can also be made adaptive in space complexity.

For the specific problem of mutual exclusion, we develop a new algorithm that illustrates an

apparent trade-off between low expected space complexity and low expected RMR complexity.

Whether this trade-off is necessary is an open problem.

For some applications, it may be helpful to pay only for objects that are updated, as opposed

to those that are merely read. We give a data structure that requires no space to represent

objects that are not updated at the cost of a small overhead on those that are.
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1 Introduction

The space complexity of shared-memory distributed data structures and protocols, measured

in terms of the number of distinct objects needed to implement them, is typically linear

in the number of processes. On the upper bound side, this follows from the ability to

implement most algorithms using a single output register for each process (which might

hold very large values). On the lower bound side, linear lower bounds have long been

known for fundamental problems like mutual exclusion [8] and implementing many common

shared-memory objects [14]; and have been shown more recently for consensus [10, 18].

Linear bounds are not terrible, but they do limit the scalability of concurrent data

structures for very large numbers of processes. The structure of the known lower bound

proofs suggest that executions requiring linear space may be rare: known bounds on mutual

exclusion and perturbable objects may construct exponentially long executions, while the

bounds on consensus depend on constructing very specific executions that are avoidable if

the processes can use randomization.

We propose considering per-execution bounds on the space complexity of a shared-memory

protocol, where the protocol is charged only for those objects that it actually uses during

the execution. This allows for expected space-complexity bounds and high-probability space

complexity bounds, which would be meaningless if an algorithm is charged for all objects,

used or not.

We define this measure formally in Section 2. We believe that our measure gives a more

refined description of the practical space complexity of many shared-memory algorithms,

and observe in our analysis of previously known algorithms in Section 3 that our measure

formalizes notions of allocate-on-use space complexity that have already been informally

considered by other researchers.

Charging only for objects used has strong practical justifications:

In a system that provides storage allocation as part of its memory management, it may

be that unused registers or pages have no actual cost to the system. Alternatively, it may

be possible to construct high-level storage allocation mechanisms even in an adversarial

setting that allow multiple protocols with dynamic space needs to share a large fixed

block of memory.

Given an algorithm with low expected space complexity – or better yet, with high-

probability guarantees of low space complexity – we may be able to run it in fixed space

at the cost of accepting a small chance that the algorithm fails by attempting to exceed

its space bound. Thus randomized space complexity can be a tool for trading off space

for probability of failure.

To show the applicability of our measure, we also include several positive results: In

Section 3, we demonstrate that many known algorithms for fundamental shared-memory

algorithms either have, or can be made to have with small tweaks, low space complexity

in most executions. In Section 4, we describe a new randomized algorithm for mutual

exclusion that achieves O(log n) space complexity with high probability for polynomially

many invocations.

In Section 5, we consider an alternative measure that charges only objects that are

updated and not those that are only read. We show that this is equivalent up to logarithmic

factors to the allocate-on-use measure.

Finally, we discuss open problems in Section 6.
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1.1 Model

We consider a standard asynchronous shared-memory model in which a collection of n pro-

cesses communicate by performing operations on shared-memory objects. Concurrency

is modeled by interleaving operations; each operation takes place atomically and is a step of

the process carrying it out. For convenience, we assume that the identity of an operation

includes the identity both of the process carrying out the operation and of the object to

which it is applied. An execution is a sequence of operations.

Scheduling is controlled by an adversary. If the processes are randomized, then each

process has access to local coins that may or may not be visible to the adversary. An adaptive

adversary may observe the internal states of the processes, including the results of local coin-

flips, but cannot predict the outcome of future coin-flips. An oblivious adversary simply

provides in advance a list of which process carries out an operation at each step, without

being able to react to the choices made by the processes. We may also consider adversaries

with powers intermediate between these two extremes. In each case, the interaction between

the processes and the adversary gives a probability distribution over executions. But rather

than make this probability distribution explicit, we will usually just generalize the notion of

an execution to a random variable H that maps to each possible execution with a probability

determined by the distribution.

1.1.1 Time complexity

The individual step complexity of an algorithm executed by a single process is the number

of steps carried out by that process before it finishes. The total step complexity is the

total number of steps over all processes. For mutual exclusion algorithms, we may consider

the remote memory reference (RMR) complexity, in which read operations on a register

are not counted if (a) the register has not changed since the last read by the same process

(in the distributed shared memory model or (b) no operation has been applied to the

registers since the last read by the same process (in the cache-coherent model).

2 Space complexity

The traditional measure of space complexity is worst-case space complexity, the number

of distinct objects used by the protocol across all executions. We consider instead the space

complexity of individual executions.

I Definition 1. The space complexity of an execution H of a shared-memory system is

the number of distinct objects O such that H includes at least one operation on O.

For randomized algorithms, this allows us to talk about expected space complexity

– the expected value of the space complexity of the execution resulting from the random

choices of the processes – and high-probability bounds on space complexity – where the

bound applies to the space complexity of all but a polynomially-small fraction of executions.

For adaptive algorithms, this allows the space complexity of an execution to depend on

the number of participating processes.

3 Examples of allocate-on-use space complexity

In this section, we analyze the space complexity of several recent algorithms from the

literature. These include the current best known algorithms (in terms of expected individual

step complexity) for implementing test-and-set [11] and consensus [3] from atomic registers,

DISC 2018
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assuming an oblivious adversary. We also include some related algorithms to demonstrate

how charging only for objects used can illuminate trade-offs that might not otherwise be

visible.

I Theorem 2.

1. Let H be an execution of the RatRace algorithm for adaptive test-and-set of Alistarh et

al. [2], with k participants. Then the space complexity of H is Θ(k) with high probability.

2. Let H be an execution of the randomized test-and-set of Alistarh and Aspnes [1]. Then

the space complexity of H is Θ(log log n) with high probability.

3. Let H be an execution of the randomized test-and-set of Giakkoupis and Woelfel [11].

Then the space complexity of H is Θ(log n) with high probability.

4. Let H be an execution of the Θ(log log n) expected time m-valued randomized consensus

protocol of Aspnes [3]. Then the space complexity of H is Θ
(

log log n · log m
log log m

)

in

expectation.

Proof.

1. The RatRace algorithm works by having each processes randomly select a path through

a binary tree until it manages to acquire a node using a splitter [16], then fight its way

back to the root by winning a 3-process consensus object at each node. Both the splitter

and consensus object associated with each node require a constant number of registers

to implement, so the space complexity is determined by the number of nodes in the

subtree traversed by processes. An analysis of a similar algorithm for adaptive collect [6]

is used to show that the size of the tree is Θ(k) with high probability, so Θ(k) of the

O(n3) registers pre-allocated in the RatRace algorithm are used. This implies that the

algorithm uses Θ(k) space with high probability.

Because our model does not require pre-allocating a specific bounded address space,

RatRace can be modified to use an unbounded number of possible processes and still get

the claimed bounds as a function of k.

2. The Alistarh-Aspnes TAS runs the processes through a sequence of Θ(log log n) sifter

objects, each implemented using a one-bit atomic register. The authors show that with

high probability, a constant number of processes remain at the end of this sequence,

which then enter a RatRace TAS object. The sifter array uses Θ(log log n) space in all

executions. From the previous argument, the RatRace object uses O(1) space with high

probability.

3. The Giakkoupis-Woelfel TAS also uses a sequence of sifter objects; these reduce the

number of remaining processes to O(1) in only Θ(log∗ n) rounds, but the cost is an

increase in the space required for each object to O(log n). However, after the first sifter

the number of remaining processes drops to O(log n) with high probability, so subsequent

sifter objects can be implemented in O(log log n) space. This makes the space required

dominated by the initial sifter object, giving the claimed bound.

4. The Aspnes consensus algorithm uses a sequence of rounds, where each round uses a

structure based on the Alistarh-Aspnes sifter to reduce the number of distinct identities

followed by an adopt-commit object to detect agreement. This produces agreement in

Θ(log log n) rounds on average.

Using the adopt-commit of Aspnes and Ellen [4], we get Θ(1) space for each round for

the sifter plus Θ
(

log m
log log m

)

for the adopt-commit object. Multiplying by Θ(log log n)

expected rounds gives the claimed bound. J
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Curiously, all of the variation in space usage for the test-and-set algorithms analyzed

above can be attributed to RatRace, either by itself or as a backup for a faster algorithm

for winnowing the processes down to a constant number. Using a worst-case measure of

space complexity hides the cost of these winnowing steps behind the polynomial worst-case

space complexity of RatRace. Using our measure instead exposes an intriguing trade-off

between time and space complexity, where the Alistarh-Aspnes algorithm obtains O(log log n)

space complexity at the cost of Θ(log log n) individual step complexity, while the Giakkoupis-

Woelfel algorithm pays O(log n) space complexity but achieves a much better Θ(log∗ n)

individual step complexity. Whether this trade-off is necessary is an open problem.

4 Monte Carlo Mutual Exclusion

In this section, we present a Monte Carlo mutual exclusion algorithm, which uses only

O(log n) registers, and against a weak adaptive adversary satisfies mutual exclusion with

high probability for polynomially many passages through the critical section. This can be

used directly, or can be combined with Lamport’s fast mutual exclusion algorithm [15] to

give an algorithm that uses O(log n) space initially, then backs off to a traditional O(n) space

algorithm when the Monte Carlo algorithm fails. The combined algorithm thus guarantees

mutual exclusion in all executions while using only O(log n) space with high probability for

polynomially many passages through the critical section.

A mutual exclusion algorithm provides two methods, lock() and unlock(). Each process

repeatedly calls lock() followed by unlock(). When a process’s lock() call terminates, it is

in the critical section (CS). The algorithm satisfies mutual exclusion, if for any execution,

no processes are in the critical section at the same time. An infinite execution is fair, if each

process that is in the CS or has a pending lock() or unlock() call either takes infinitely

many steps or enters the remainder section (which happens when it is not in the CS and has

no lock() or unlock() call pending). A mutual exclusion algorithm is deadlock-free, if in

any infinite fair execution, each lock() and unlock() call terminates. If it is randomized,

and in an infinite fair execution each lock() and unlock() call terminates with probability

1, then we call it randomized deadlock-free.

Burns and Lynch [8] proved that any deterministic deadlock-free mutual exclusion

algorithm implemented from registers, requires at least n of them. For fewer than n registers,

the proof constructs exponentially long executions such that at the end two processes end up

in the CS. But there are no mutual exclusion algorithms known that use o(n) registers and

do not fail provided that only polynomially many lock() calls are made. Here we present a

randomized algorithm that has this property with high probability, i.e., it uses only O(log n)

registers, and in an execution with polynomially many lock() calls mutual exclusion is

satisfied with high probability.

Our algorithm works for a weak adaptive adversary, which cannot intervene between a

process’s coin flip and its next shared step. I.e., it schedules a process based on the entire

system state, and then that process flips its next coin, and immediately performs its following

shared memory step.

The time efficiency of mutual exclusion algorithms is usually measured in terms of remote

memory references (RMR) complexity. Here we consider the standard cache-coherent (CC)

model. Each processor keeps local copies of shared variables in its cache; the consistency of

copies in different caches is maintained by a coherence protocol. An RMR occurs whenever a

process writes a register (which invalidates all valid cache copies of that register), and when a

process reads a register of which it has no valid cache copy. The RMR complexity of a mutual

DISC 2018
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exclusion algorithm is the maximum number of RMRs any lock() and unlock() method

incurs. The best deterministic mutual exclusion algorithms use O(n) registers and have an

RMR complexity of O(log n) [17], which is tight [5]. Randomized Las Vegas algorithms can

beat the deterministic lower bound (e.g. [7, 13, 12]), but they all use at least a linear or even

super-linear number of registers and stronger compare-and-swap primitives.

Our algorithm has an expected amortized RMR complexity of O(n): In any execution

with L lock() calls, the total expected number of RMRs is O(n · L).

4.1 The algorithm

Pseudocode for our Monte Carlo mutual exclusion algorithm is given in Figure 1.

The idea of the algorithm is that to reach the critical section, a process must climb a

slippery ladder whose rungs are a set of Γ = O(log n) Boolean registers S0, . . . , SΓ−1. Each

of these registers is initially 0.

To climb the ladder, a process executing a lock() call attempts to acquire each rung by

flipping a coin. With probability 1/2, it writes a 1 to the register and continues to the next.

With probability 1/2, it reads the register instead. If the process reads a 0, it tries again; if

a 1, it falls back to the bottom of the ladder. The first process to write a 1 will always rise,

preventing deadlock. Roughly half of the remaining processes that reach each rung will fall,

leaving only a single process with high probability after O(log n) rungs. For processes that

fall, the number of steps they take in their ascent has a geometric distribution, so each such

process takes O(1) steps per attempt.

At the bottom of the ladder, a process spins on an auxiliary register A, that is modified

only by processes executing unlock() calls. This ensures that the expected amortized RMR

complexity of each passage through the critical section is O(n), as each call to unlock()

releases at most n processes, each of which takes O(1) steps before spinning on A again.

To avoid ABAs, register A stores a sequence number that increases with each write. This

means that for infinitely many lock() calls, the values stored in A are unbounded. But if

each process calls lock() at most polynomially many times (after which no guarantee for

the mutual exclusion property can be made anyway), then O(log n) bits suffice for A.

I Theorem 3. There is a randomized exclusion algorithm implemented from O(log n) bounded

shared registers with expected amortized RMR complexity O(n), such that for a polynomial

number of lock() calls, the algorithm is randomized deadlock-free, and satisfies mutual

exclusion with high probability.

4.2 Proof of Theorem 3

The proof is divided into three parts. Section 4.2.1 shows mutual exclusion holds for

polynomially many passages through the critical section with high probability. Section 4.2.2

shows deadlock-freedom. Section 4.2.3 gives the bound on RMR complexity.

4.2.1 Mutual exclusion

We consider a random execution of the algorithm, and let Ct denote the configuration reached

at point t, and Lt denote the number of completed lock() calls at point t.

The idea of this part of the proof is that we define a potential function Φ(Ct) that becomes

exponentially large if more than one process enters the critical section simultaneously. We

then show that the expected value of Φ(Ct) is proportional to Lt, and in particular that it

is small if few lock() calls have finished. This gives a bound on the probability that two

processes are in the critical section using Markov’s inequality.



J. Aspnes, B. Haeupler, A. Tong, and P. Woelfel 8:7

Class Lock(Γ).

shared:

Boolean Register S0, . . . , SΓ−1

Register A initially (⊥, 0)

local:

Integers i, seq = 0 (seq has global scope)

Method lock()

1 i = 0

2 while i < Γ do

3 Choose random rnd ∈ {R, W } s.t. P rob(rnd = W ) = 1

2

4 if rnd = R then

5 if Si = 1 then

6 i = 0;

7 end

8 else

9 Si.write(1); i = i + 1

10 end

11 if i = 0 then

12 a = A

13 if S0 = 1 then

14 while A = a do “nothing” done

15 end

16 end

17 end

Method unlock()

18 i = Γ

19 while i > 0 do

20 Si−1.write(0); i := i − 1

21 end

22 A.write(myID, seq + 1); seq = seq + 1

Figure 1 Monte Carlo Mutual Exclusion.

To denote the value of a local variable of a process p, we add subscript p to the variable

name. For example, ip denotes the value of p’s local variable i. To bound the probability of

error, we define a potential function. The potential of a process p ∈ {1, . . . , n} is

α(p) =















−1 if p is poised to read in lines 12-14

and entered this section through line 6

2ip − 1 otherwise.

(4.1)

Hence, α(p) = −1 if and only if p is poised in lines 12-14, and prior to entering that section

it read Sip
= 1 in line 5. The potential of register index j ∈ {0, . . . , Γ− 1} is

β(j) = −Sj · w
j (4.2)

DISC 2018



8:8 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

Finally, the potential of the system at time t is

Φ(Ct) =

n
∑

p=1

α(p) +

Γ−1
∑

j=0

β(j) + (n− 1) (4.3)

I Lemma 4. Suppose at some point t1 process p reads Sj1
= 1 in line 5, and at a point

t2 ≥ t1 it reads Sj2
= 1 in line 5. Then at some point t′ ∈ [t1, t2] either the value of S0

changes from 0 to 1, or the value of A changes.

Proof. After reading Sj1
= 1 at point t1, process p proceeds to execute line 13, and thus it

executes lines 12-14 during [t1, t2]. Let t′ ∈ [t1, t2] be the point when it reads S0 in line 13.

First assume S0 = 1 at point t′. Then p enters the while-loop in line 14, and does not

leave the while-loop until A has changed at least once since p’s previous read of A in line 12.

Hence, in that case A changes at some point between [t1, t2], and the claim is true.

Now assume S0 = 0 at point t′. We show that S0 changes from 0 to 1 at some point in

[t′, t2], which proves the claim. If j2 = 0, then at point t2 process p reads S0 = 1, so this

is obvious. Hence, assume j2 > 0. Then before point t2 process p must increment its local

variable ip by at least one, which means it writes 1 to S0 in line 9. J

I Lemma 5. For a random execution that ends at point t with L lock() calls completed,

E [Φ(Ct)] ≤ 2n(L + 1).

Proof. Consider the initial configuration C0 where each process is poised to begin a lock()

call and all registers are 0. Then for all processes p, α(p) = 0, and for all j ∈ {0, . . . , Γ− 1},

β(j) = 0. Hence, Φ(C0) = n− 1 < n. We bound the expected value of Φ(Ct) in subsequent

steps by case analysis. Whenever the adversary schedules a process p that has a pending

lock() or unlock() call, p will do one of the following:

(1) Set Sip
= 0 in line 20;

(2) Exit Lines 12–14 having entered from line 5;

(3) Exit Lines 12–14 having entered from line 6;

(4) Stay in Lines 12–14;

(5) Choose rndp at random in line 3 and then immediately either read Sip
in line 5 or write

Sip
in line 9.

We will show that in cases (1), (2), (4), and (5) the expected change in Φ is less than or

equal to 0. In case (3) Φ increases by 1. However, case (3) can only occur at most twice per

process per successful lock call leading to our bound on Φ(Ct).

(1) Suppose p sets Sip−1 = 0 in line 20. Then α(p) decreases by 2ip−1. If Sip−1 was 1,

then βip−1 increases by Sip−1 and Φ does not change. If Sip−1 was 0, then Φ decreases.

(2) Next suppose p reads S0 = 0 in line 13 or reads some A 6= ap in line 14 having entered

from line 5 (i.e., α(p) = 0). Then p becomes poised to execute line 3 and Φ does not change.

(3) Next suppose p reads S0 = 0 in line 13 or p reads some A 6= ap in line 14 having

entered from line 6p = R (i.e., when α(p) = −1). Then no register gets written, p’s local

variable i remains at value 0, and p ceases to be poised to execute a line in the range 12-14,

so α(p) increases from −1 to 0. So Φ increases by 1.

(4) Next, suppose p reads S0 = 1 in line 13, reads A in line 12, or reads A = ap in line 14.

Then no register gets written, α(p) does not change, and p’s local variable i remains at 0, so

Φ stays the same.

(5) Finally, suppose that when p gets scheduled it chooses rndp at random, and then

it either reads or writes Sip
, depending on its random choice rndp. First assume Sip

= 0

when p gets scheduled. If rndp = R, then p reads Sip
in line 5, and becomes poised to either
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read A in line 12 (if ip = 0) entering this section from line 5 so α(p) does not change, or

becomes poised to choose rndp at random again in line 3. In either case Φ does not change.

If rndp = W , then p proceeds to write 1 to Sip
in line 9, increments its local variable i to

i′
p = ip + 1, and either enters the critical section (if i′

p = Γ), or becomes poised to make

another random choice in line 3. Hence, the value of α(p) increases by 2ip (from 2ip − 1 to

2ip+1 − 1). Since Sip
changes from 0 to 1, the value of β(ip) decreases by 2ip . Therefore, the

change of potential Φ is 0.

Now suppose Sip
= 1 when p gets scheduled. If rndp = R, then p reads Sip

= 1 in line 5,

and then immediately sets i to 0, and becomes poised to read A in line 12 entering from

line 6. Thus, p’s new potential is −1. No register gets written, so Φ changes by the same

amount as α(p), which is −2ip . If rndp = W , then p writes 1 to Sip
in line 5, then increments

its local variable i to i′
p = ip + 1, and either enters the critical section if i′

p = Γ, or become

poised to make another random choice in line 3. Hence, p’s potential increases by 2ip . To

summarize, if Sip
= 1, then with probability 1/2 the value of Φ increases by 2ip , and with

probability 1/2 it decreases by 2ip . Therefore the expected value of Φ does not change in

this case.

The only time Φ can increase in expectation is in case (3), in which case it increases by 1.

We will now show that for any process p, this case can happen at most twice per critical

section. Case (3) can only occur by entering lines 12–14 by reading Sip
= 1 in line 5.

By Lemma 4 we have that if process p reads Sip
= 1 at t1 and t2 > t1, then the value

of S0 changes from 0 to 1 or the value of A changes at some point t′ ∈ [t1, t2]. Let Ut be

the number of completed unlock() calls, Lt be the number of completed lock() calls, and

At be the value of Aseq at time t. Since Aseq is only incremented at the end of a completed

lock call, At ≤ Ut. Since an unlock call is preceded by a successful lock() call, Ut ≤ Lt.

Hence At ≤ Lt. The number of times S0 changes from 0 to 1 is also bounded by one more

than the number of completed lock() calls at time t. Value 0 is written to S0 only once per

unlock() call. Thus the number of times S0 changes from 0 to 1 is at most 1 + Ut ≤ 1 + Lt,

and at any time t, the number of times a process p has taken a step of type (3) is at most

1 + 2Lt. We thus have

E [Φ(Ct)] ≤ Φ(C0) + n(1 + 2L) = (n− 1) + n + 2nL < 2n(L + 1). (4.4)

J

I Lemma 6. In any execution, at any point there exists at least one process pmax with local

variable ipmax
such that Sj = 0 for all j ∈ {ipmax

, . . . , Γ− 1}.

Proof. Consider any point t during an execution of the mutual exclusion algorithm. Let

pmax be a process such that ipmax
is maximal at that point. For the purpose of contradiction

assume there is an index j ∈ {ipmax
, . . . , Γ− 1}, such that Sj = 1 at point t. Let p′ be the

last process that writes 1 to Sj at some point t′ ≤ t. I.e.,

Sj = 1 throughout (t′, t]. (4.5)

Moreover, when p′ writes 1 to Sj in line 9 at point t′, ip′ = j, and immediately after writing

it increments ip′ to j + 1. Since ip′ ≤ ipmax
≤ j at point t, process p′ must at some later

point t∗ ∈ (t′, t) decrement ip′ from j + 1 to j. This can only happen when p′ executes line 20

while ip′ = j + 1. But then p′ also writes 0 to Sj at t∗ ∈ (t′, t), which contradicts (4.5). J

I Lemma 7. In any reachable configuration C, Φ(C) is non-negative.

DISC 2018



8:10 Allocate-On-Use Space Complexity of Shared-Memory Algorithms

Proof. By Lemma 6 there exists a process pmax such that Sj = 0 for all j ∈ {ipmax,...,Γ−1}.

Then

α(pmax) = 2ipmax − 1 =

ipmax−1
∑

j=0

2j ≥

Γ−1
∑

j=0

Sj · 2
j = −

Γ−1
∑

j=0

β(j).

Since α(p) ≥ −1 for each other process p,

Φ(C) = n− 1 +
∑

p

α(p) +

Γ−1
∑

j=0

β(j) ≥ n− 1 +
∑

p6=pmax

α(p) ≥ n− 1 +
∑

p6=pmax

−1 = 0. J

I Lemma 8. If C is a configuration in which at least two processes are in the critical section,

Φ(C) ≥ 2Γ.

Proof. Suppose that in C, distinct processes p1 and p2 are in the critical section. Then

α(p1) = α(p2) = 2Γ − 1. Since α(p) ≥ −1 for each other process, and β(j) ≥ −2j

Φ(C) ≥
(

2(2Γ − 1) + (n− 2) · (−1)
)

+





Γ−1
∑

j=0

−2j



 + (n− 1) = 2Γ (4.6)

J

I Lemma 9. For Γ = c log n, the probability that mutual exclusion is violated at any point

before L lock() calls finish is O
(

L2 · n−c+1
)

.

Proof. Let tj for j ∈ {2, . . . , L} be the point when the j-th lock() call completes. By

Lemma 5, E[Φ(Ctj
)] = O(n · j), so by Lemmas 7, 8 and Markov’s inequality,

Pr
[

Ctj
∈ Cfail

]

≤ Pr
[

Φ(Ctj
) ≥ 2Γ

]

= O

(

n · j

2Γ

)

.

Mutual exclusion is violated before L lock() calls finish if and only if it is violated after

` lock() calls finish for some ` ∈ {2, . . . , L− 1}. The probability of that event is

Pr
[

∃j ∈ {2, . . . , L− 1} : Ctj
∈ Cfail

]

≤ Pr
[

∃j ∈ {2, . . . , L− 1} : Φ(Ctj
) ≥ 2Γ

]

≤

L−1
∑

j=2

Pr
[

Φ(Ctj
) ≥ 2Γ

]

= O





L−1
∑

j=2

n(j + 1)

2Γ



 = O

(

n · L2

nc

)

= O

(

L2

nc−1

)

.

J

4.2.2 Deadlock-freedom

I Lemma 10. The algorithm is randomized deadlock-free.

Proof. Consider any point t in an infinite fair execution, in which at least one process has a

pending lock() call. We will show that some process enters the critical section after point t

with probability 1.

Suppose no process enters the critical section in [t,∞). Since unlock() is wait-free,

there is a point t1 ≥ t such that after t1 there are no more pending unlock() calls. Hence,

throughout [t1,∞) no process writes 0 to any register Sj , j ∈ {0, . . . , Γ− 1}. In other words,

only value 1 may get written to any register Sj after point t1. Since there are only a finite
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number of registers Sj , there is a point t2 such that no register Sj , j ∈ {0, . . . , Γ−1}, changes

value after t2. By Lemma 6 there is a process pmax such that at point t2 we have Sj = 0 for

all j ∈ {ipmax
, . . . , Γ− 1}. Let i∗ be the value of ipmax

at point t2. Thus,

Si∗ = · · · = SΓ−1 = 0 throughout [t2,∞). (4.7)

If i∗ > 0, then at t2 process pmax is not poised to execute a shared memory operation in

lines 12-14 (because ipmax
= i∗ at that point). Hence, pmax is either poised to read in line 5

or to write in line 9. The latter is not possible, as pmax would eventually write 1 to Si∗ ,

contradicting (4.7). If pmax reads in line 5, then it reads 0 from Sipmax
, where ipmax

= i∗ > 0,

and so it will begin another iteration of the while-loop with ipmax
= i∗. Repeating the

argument, pmax will execute an infinite number of iterations of the outer while-loop, each

time choosing at random rnd = R, and then reading Si∗ in line 5. This event has probability

0.

Hence, consider the case i∗ = 0. First assume that at some point after t2 some process p

is not poised to execute line 14. Then due to (4.7) the if-condition in line 13 remains false for

p throughout [t3,∞), so p executes an infinite number of iterations of the outer while-loop.

With probability 1 process p will eventually in some iteration choose rnd = W in line 3 and

then write 1 to some register Sj , j ∈ {0, . . . , Γ− 1}. This contradicts (4.7) since we assumed

i∗ = 0.

Thus, throughout [t2,∞) all processes with pending lock() calls are stuck in the inner

while-loop in line 14. Consider any process q stuck in the while-loop, and let T be the point

when it read A for last time prior to becoming stuck. Let a∗ be the value of A at point T .

Register A gets only written in line 22, and due to the increasing sequence number, the same

value never gets written twice. Hence, since q is stuck in line 14, it reads A = a∗ infinitely

many times, and thus

no process writes A throughout [T,∞). (4.8)

But at some point T1 > T and before q becomes stuck in the while-loop, it reads S0 = 1 in

line 13. By (4.7), after T1 some process writes 0 to S0, and then it will eventually write to A.

This contradicts (4.8). J

4.2.3 RMR Bound

I Lemma 11. In an execution with L invoked lock() calls, the expected total number of

RMRs is O
(

(n + Γ)L
)

.

The remainder of this section is devoted to the proof of this lemma.

Let Xp,` denote the number of RMRs a process p incurs in line `, where ` is one of 5, 9,

12, 13, 14, 20, and 22. These are the only lines where a process executes shared memory

operations, so the total number of RMRs is obtained by summing over all Xp,`.

We now consider a random execution, and condition on the event that the random

execution contains L lock() calls.

I Lemma 12. For each j ∈ {0, . . . , Γ− 1}, each process incurs in total at most L + 1 RMRs

by reading value 0 from register Sj.

Proof. Value 0 is written to Sj (in line 20) only once per unlock() call. Only the first read

by a process in the execution, or the first read following such a write of value 0 can at the

same time return 0 and incur an RMR. Now the claimed bound follows from the fact that

there are at most L lock(), and thus at most L unlock() calls. J
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I Lemma 13. For any process p we have

Xp,12 + Xp,14 ≤ L + 1 and Xp,13 ≤ 2(L + 1).

Proof. The value of A changes at most once per unlock() call, and thus at most L times

during execution E. Hence, process p incurs at most L + 1 RMRs by reading A. This proofs

the claimed upper bound on Xp,12 + Xp,14.

By Lemma 12, the number of RMRs incurred by p’s reads of value 0 in line 13 is at most

L + 1. If process p reads 1 from S0 in that line, then, due to the while-loop in line 14, it

does not read S0 again until A changed at least once since p’s preceding read of A in line 12.

In particular, for each read of value 1 from S0, there is a distinct RMR incurred by p when

reading A in line 14. Hence, Xp,13 ≤ L + 1 + Xp,14 ≤ 2(L + 1). J

I Lemma 14. E[
∑

p Xp,9] = O
(

(n + Γ)L)
)

Proof. For b ∈ {0, 1} let Zb denote the number of times a write in line 9 (by any process)

overwrites value b with value 1. Thus,
∑

p

Xp,9 = Z0 + Z1. (4.9)

Since each register Sj is reset to 0 only once per unlock() call, it can change from 0 to 1 at

most L + 1 times. Accounting for Γ registers, we obtain

Z0 ≤ Γ(L + 1). (4.10)

Now suppose Sj = 1 when process p makes a random choice in line 3. With probability

1− 1/w process p decides to read, and if it does so, it reads Sj = 1. Hence, p overwrites in 9

a register that has value 1 in expectation at most 1/(1− 1/w)− 1 = 1/(w − 1) times before

p reads a register with value 1 in line 5. By Lemma 4 between any two such reads, either

S0 changes from 0 to 1 or A changes, and each of these events happens at most once per

unlock() call. Thus, the expected number of times process p writes to a register Sj that has

value 1 is at most 1 + 1/(w − 1) · L. Summing over all processes we obtain E[Z1] = O(n · L)

(recall that Z0 = Z1 = 0 if L = 0). Now the claim follows from (4.9) and (4.10). J

I Lemma 15. For any process p we have

E[Xp,5] = O
(

(n + Γ)L
)

.

Proof. Let Yp denote the number of times process p reads a value of 1 in line 5. By Lemma 4,

between any two such consecutive reads, either the value of A changes, or S0 changes from 0

to 1. Since S0 can change from 1 to 0 at most L times (once for each unlock() call), it can

change from 0 to 1 at most L + 1 times. The value of A can also change at most once for

each unlock() call, and thus at most L times. Hence, Yp ≤ 2L + 2.

By Lemma 12 process p incurs at most L + 1 RMRs by reading value 0 from S0 in line 5.

Now suppose j > 0. Then p reads Sj only after writing 1 to Sj−1 in line 9, which contributes

to Xp,5. Because p chooses to write Sj (instead of reading it) with probability 1/w, the

expected number of times p can read Sj in consecutive iterations of the while-loop (and thus

before changing ip) is at most w − 1. Hence, for all x,

E[Xp,5 |Xp,9 = x] ≤ E[Yp |Xp,9 = x] + L + 1 + x(w − 1) ≤ 3(L + 1) + x(w − 1)

Summing this conditional expectation weighted with Pr [Xp,9 = x] over all values of x, yields

E[Xp,5] ≤ 3L + 3 + E[Xp,9] · (w − 1).

Now the claim follows from Lemma 14. J
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Lemma 11 now follows from Lemmas 12, 13, and 14:

Proof of Lemma 11. If L = 0, then no process calls lock() or unlock(), so the lemma is

trivially true. Hence, we assume w.l.o.g. that L ≥ 1. Since there are at most L unlock()

calls in total, we have
∑

p

Xp,20 ≤ Γ · L and
∑

p

Xp,22 ≤ L. J

4.3 When the algorithm fails

Because the algorithm is randomized, there is a nonzero chance that it violates mutual

exclusion even in short executions. We can guard against this using Lamport’s fast mutual

exclusion algorithm [15], which is now often abstracted in the form of a splitter object [16].

Lamport’s fast mutual exclusion algorithm uses O(1) space and O(1) time to either allow a

process into the critical section or deny it entry, and works as long as at most one process at

a time invokes it. Because our algorithm guarantees mutual exclusion for polynomially many

critical sections with high probability, in most executions we will not see multiple processes

attempting to access the Lamport mutex, and so each process will successfully acquire this

mutex. In the even that a process does not acquire the Lamport mutex, then our algorithm

has failed; the process can then unlock the randomized algorithm and move over to a backup

algorithm to attempt to acquire a mutex there. A 2-process mutex algorithm (using O(1)

space and O(1) time) can then be used to choose between processes leaving the Lamport

mutex and the backup mutex.

Because the combined mutex never uses more than O(n) objects, the high-probability

O(log n) space bound also gives a bound on expected space. The full result is:

I Corollary 16. There is a randomized mutual exclusion algorithm with expected amortized

RMR complexity O(n), such that the algorithm is randomized deadlock-free; satisfies mutual

exclusion in all executions; uses at most O(n) objects in all executions; and, for a polynomial

number of lock() calls, uses O(log n) objects in expectation and with high probability.

5 Simulating allocation on update

With a more refined space complexity measure comes the need to develop new tools for

minimizing this measure. In this section, we describe a technique for designing protocols

where the space complexity is proportional to the number of objects that are updated as

opposed to all objects that are accessed. We distinguish between update operations that

can change an object’s state and read operations that cannot; an object is considered to

be updated if an update operation is applied to it, even if its state is not changed by this

particular application.

Counting only updates corresponds to an allocate-on-update model where merely

reading an object costs nothing. We show that this model gives costs equivalent up to a

factor logarithmic in size of the address space to the allocate-on-use model of Definition 1.

To obtain this result, we construct a data structure where the objects O1, O2, . . . are the

leaves of a binary search tree whose internal nodes are one-bit registers that record if any

object in their subtree has been updated. A read operation on some object Oi starts at the

root of the tree and follows the path to Oi until it sees a 0, indicating that Oi can be treated

as still being in its initial state, or reaches Oi and applies the operation to it. Conversely, an

update operation starts by updating Oi and then sets all the bits in order along the path

from Oi to the root.

DISC 2018
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Figure 2 Tree derived from Elias gamma code.

The structure of the tree is based on the well-known correspondence between binary

trees and prefix-free codes. Here the left edge leaving each node is labeled with a 0 and the

right edge with a 1, the path to each leaf gives a code word, and the path to each internal

node gives a proper prefix of a code word. The particular code we will use to construct the

tree is the Elias gamma code [9]. This encodes each positive integer i as a sequence of

bits, by first expressing i as its unique binary expansion 1i1i2 . . . in, and then constructing a

codeword γ(i) = 0n1i1i2 . . . in. This gives a codeword for each positive integer i with length

2blg ic+ 1 = O(log i). The first few levels of the resulting tree are depicted in Figure 2.

Pseudocode for the simulation is given in Algorithm 4. Each register is labeled by a

codeword prefix. The objects are labeled with their original indices.

I Lemma 17. Algorithm 4 gives a linearizable implementation of O1, O2, . . . , such that in

any execution in which update operations start on at most m objects, and the maximum index

of these objects is s:

1. The space complexity is O(m log s).

2. The step complexity of an apply(π) operation where π is an update to Oi is O(log i).

3. The step complexity of an apply(π) operation where π is a read of Oi is O(min(log i, log s)).

Proof. We start by showing linearizability.

Given a concurrent execution H of Algorithm 4, we will construct an explicit linearization

S. The first step in this construction is to assign a linearization point to each operation π in

H. If π is an update operation on some object Oi, its linearization point is the first step in

H at which (a) π has been applied to Oi, and (b) every bit in an ancestor of Oi is set. If π is

a read operation, its linearization point is the step at which either π is applied to Oi, or the

process executing π reads a 0 from an ancestor of Oi. In the case of an update operation π,

the linearization point follows the step in which π is applied to Oi and precedes the return

of π (since π cannot return without setting all ancestors of Oi to 1). In the case of a read

operation π, the linearization point corresponds to an actual step of π. In both cases, the

linearization point of π lies within π’s execution interval.
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Algorithm 4: Applying operation π to object Oi.

procedure apply(π)

Let Oi be the object on which π is an operation

Let x1x2 . . . xk be the encoding of i

if π is an update then

r ← π(Oi)

for j ← k − 1 . . . 0 do

Rx1...xj
← 1

end

return r

else

for j ← 0 . . . k − 1 do

if Rx1...xj
= 0 then

return π applied to the initial state of Oi

end

end

// Reached only if all nodes on path are 1

return π(Oi)

end

end

If we declare ρ ≤ σ whenever ρ’s linearization point precedes σ’s, we get a preorder on

all operations in H. Because each operation’s lineaerization point lies within its execution

interval, this preorder is consistent with the observed execution order in H. But it is not

necessarily a total order because update operations that are applied to the same object Oi

may be assigned the same linearization point: the first step at which all ancestors of Oi are

1. Should this occur, we break ties by ordering such updates according to the order in which

they were applied to Oi. We now argue that the resulting total order gives a sequential

execution S on O1, O2, . . . . This requires showing that each operation that returns in H

returns the same value in H as it would in S.

Fix some particular Oi. The operations on Oi can be divided into three groups:

1. Read operations that observe 0 in an ancestor of Oi.

2. Update operations that are applied to Oi before all ancestors of Oi are 1.

3. Read or update operations that are applied to Oi after all ancestors of Oi are 1.

That these groups include all operations follows from the fact that any update operation

is applied either before or after all ancestors of Oi are 1, and any read operation that does

not observe a 0 will eventually be applied to Oi after all ancestors of Oi are 1.

Now observe that all operations in the first group are assigned linearization points before

the step at which all ancestors of Oi are 1; in the second group, at this step; and in the

third group, after this step. So S restricted to Oi consists of a group of read operations

that return values obtained from the inital state of Oi, consistent with having no preceding

updates; followed by a sequence of updates linearized in the same order that they are applied

to Oi in H; followed by a sequence that may contain mixed updates and reads that are

again linearized in the same order that they are applied to Oi in H. Since the first group of

operations contain only read operations, the operations applied to Oi in H start with the

same initial state as in S, and since they are the same operations applied in the the same

order, they return the same values.
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For space complexity, observe that any object accessed in the execution is either (a) an

object Oi that is updated; (b) a register that is the ancestor of an object that is updated; or

(c) a register or object all of whose ancestors are set to 1. Since a register is set to 1 only if

it is an ancestor of an updated object, and since each such register has at least one child

that is either in category (a) or (b), there is an injection from the set of registers and objects

in category (c) to their parents in category (b). Category (a) requires m space; (b) requires

O(m log s) space; and thus (c) also requires O(m log s) space. This gives O(m log s) space

total.

Time complexity of updates is immediate from the code; apply(π) traverses O(log i)

nodes to reach Oi. For reads, apply(π) follows a path of length O(log i) that stops early if it

reaches a node not on the path to an updated object; since any such path to an updated

object has length O(log s), this gives the claimed bound. J

We believe that these overheads are the best possible using a binary tree structure.

However, using a tree with higher arity (equivalent to using a code with a larger alphabet)

could produce a lower time complexity overhead at the cost of more wasted space. We do

not have a lower bound demonstrating that this particular trade-off is necessary, so the exact

complexity of simulating allocate-on-update in the simpler allocate-on-access model remains

open.

6 Open problems

While we have started a formal approach to analyzing allocate-on-use space complexity for

shared-memory distributed algorithms, much remains to be done.

We have demonstrated that it is possible to solve mutual exclusion for a polynomial

number of locks with logarithmic space complexity with high probability. Our algorithm

pays for its low space complexity with linear RMR complexity. Curiously, it is possible to

achieve both O(1) space and RMR complexity with high probability using very long random

delays under the assumption that critical sections are not held for long; this follows from

Lamport’s fast mutual exclusion algorithm [15] and is essentially a randomized version of

the delay-based algorithm of Fischer described by Lamport. However, this algorithm has

poor step complexity even in the absence of contention. We conjecture that there exists

a randomized algorithm for mutual exclusion that simultaneously achieves O(log n) space

complexity, O(log n) RMR complexity, and O(log n) uncontended step complexity, all with

high probability assuming polynomially many passages through the critical section.

We have also shown that a system that assumes an allocate-on-update model can be

simulated in the stricter allocate-on-access model with a logarithmic increase in the number

of objects used. It is not clear whether this overhead is necessary, or whether it could be

eliminated with a more sophisticated simulation.
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